
Implementing Ruppert’s Algorithm for
Generic Curves in 2D

Barbara M. Anthony and Matthew D. Flatau

Southwestern University, Georgetown Texas
{anthonyb,flataum}@southwestern.edu

1 Introduction

While quality implementations exist for meshing straight-line inputs, fewer are
available for handling curved inputs, even in 2D. Many are based on the well-
known Ruppert’s algorithm [10] which has led to a large body of research in
meshing. In this work, we provide a software package that handles a variety of
smooth inputs in 2D, based on a minimal modification of Ruppert’s algorithm.
Existing software for curved inputs lacks the elegance of Ruppert’s original
algorithm [1, 3] (and subsequent improvements) or is application-specific [2].
In contrast, we seek to keep the core of our work as similar as possible to
Ruppert’s algorithm to allow our software to benefit from related research
and to be easily updated for additional input curve types. In particular, the
differences in our implementation versus the original are limited to two pre-
processing steps in the spirit of [7] and a generalized midpoint calculation.

2 Implementation

Ruppert’s algorithm [10] is given in Algorithm 1. We characterize the only
modifications necessary to apply said algorithm on generic curved inputs in
two dimensions. Next, we describe the classes of curves currently implemented.

2.1 Modifications for Generic Curves

For any generic curve, in order to use Ruppert’s algorithm with minimal mod-
ifications, it suffices to be able to split the curve in half, presplit the curve
to obtain subsegments with restricted total variation in orientation, and in-
tersect the curve with a circle for protecting small angles. While the first is
easiest to state, such midpoint calculation is the only change to the body of
Ruppert’s algorithm; the other two steps are necessary for preprocessing.
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Algorithm 1 Ruppert’s Algorithm

Require: Planar straight-line graph X, with vertices V and segments S
Require: Angle between any pair of adjacent segments ≥ 60◦

Ensure: Conforming Delaunay triangulation DT of X with all angles ≥ α(< 20.7◦)
1: Initialize bounding box and triangulate input vertices
2: while any segment s is encroached or any triangle t has some angle < α do
3: if s is encroached then
4: add midpoint of s to V , update {S, DT}
5: else
6: p = the circumcenter of t
7: if p encroaches upon some segment s′ then
8: add midpoint of s′ to V , update {S, DT}
9: else

10: add p to V , update DT
11: end if
12: end if
13: end while

Midpoint Lines 4 and 8 of Algorithm 1 necessitate splitting an input seg-
ment in half, i.e., determining the midpoint and splitting appropriately. While
trivial for a straight line segment, finding a suitable point for generic curves
requires more thought. While straight segments are subdivided into two por-
tions of equal length, the length requirement need not be strictly maintained
for generic curves; rather, the split must occur at a point on the curve near
to the center of the diametral circle determined by the curve’s endpoints.
(Preprocessing subdivides any closed curves into appropriate subsegments.)
Presplit For Algorithm 1 to succeed, segments can be arbitrarily long pro-
vided they do not curve ‘too much’. In particular, curves must stay within
the diametral ball of the endpoints, which can be ensured by restricting the
total variation in orientation. For generic curves a 45◦ bound suffices; it can
be relaxed to 90◦ for circular arcs [7].
Small Angle Circles Small input angles (< 60◦ is the theoretical bound,
though in practice angles > 51◦ typically work [6]) inherently pose a prob-
lem for Algorithm 1. Typically such angles are handled by splitting adjacent
segments at equal lengths and allowing certain small angles to remain in the
final triangulation [5, 12]. Our implementation permits them to remain by ex-
plicitly adding a circle around a vertex with a small angle, as in [9], splitting
the adjacent segments at equal lengths, i.e. the radius. The region inside said
circles is now ‘protected’ and Ruppert’s algorithm proceeds outside the circle.

2.2 Curve Classes

The generic curves that are first implemented include: (straight) line segments,
circles, circular arcs, and Bézier curves (quadratic and cubic).
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Midpoint Midpoint calculations for the indicated types are simple. The only
complication arises from the possibility that numerous points may exist on a
single curve. Thus there is some overhead in maintaining the relative ordering,
and noting that midpoints are with respect to subsegments, not necessarily
the curve as a whole. Likewise, knowing the endpoints of a circular arc does
not suffice, since there are four possible circular arcs with a given radius and
endpoints, reduced to two with a specified center, and determined uniquely if
ordering of the endpoints is standardized. While no sophisticated calculations
are required, curves each require their own class to handle the distinctions.
Presplit As mentioned, Algorithm 1 requires bounds on the total variation
in orientation of input curves. Naturally straight line segments have zero vari-
ation. Circles and circular arcs can easily be presplit by finding the angle
between points on the curve (if any) and subdividing appropriately. These
calculations are aided by the total variation precisely matching the angle
spanned by the associated arc. For Béziers, finding the total variation involves
calculating angles between tangent lines. For quadratic Béziers, it is the angle
between tangents at the endpoints, whereas for cubic Béziers a third interior
point should be considered. In either case, midpoint insertion occurs and is
repeated until the total variation of all subsegments satisfies the constraints.
Small Angle Circles Circles are inserted around small angles preventing
Algorithm 1 from continuing to split indefinitely. The radius r for each small
angle circle should be small enough so that no such circles overlap or touch
disjoint curves; as such, one-third the distance to the nearest disjoint curve or
input vertex suffices. Currently for Béziers a brute-force search is done using
an approximation for the curve, with satisfactory results, but we hope to
improve the efficiency with more sophisticated techniques. Finding the point
on a straight line segment that is a distance r from a small angle vertex is
trivial, but computing this intersection is more complicated for generic curves
(explicit formula is known for circles/arcs, binary search is used for Béziers).

The final challenge to constructing the small angle circles lies in correctly
ordering the intersection points. The most interesting case arises when the
small angle circle intersects two or more curves which are tangent at the
relevant vertex. Detecting such tangencies is not difficult, but since there can
be arbitrarily many tangent curves at a given point (see Fig. 2(b)) a systematic
way to determine the ordering is a must. As such, we maintain a curvature
variable, indicating both how quickly a curve recedes from the straight line
and in which direction. For instance, line segments have zero curvature while
circles have a curvature based on the inverse of the radius of the curve.

3 Examples

We now provide examples illustrating the software package. Some examples
explicitly show presplit points (blue), small angle circles (red), the resulting
triangulations, and zoomed-in portions illustrating the detail in the mesh.
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Fig. 1. From left to right: a smooth input with input vertices enlarged, presplit
vertices inserted, small angle protection circles added, and the final triangulation
after performing Ruppert’s algorithm with midpoint modification.

Fig. 2. A triangulation of multiple cubic Bézier curves (left), numerous curves
(circles, Béziers, and a segment) tangent at the center (middle), and a zoomed-in
view of the detailed mesh between tangent curves (right).

Fig. 3. A complex mesh (left), another input (middle), and resulting output (right).

Fig. 4. A mix of curves (left), and a mesh of Texas (middle), zoomed in near the
port of Houston (right) which contains small angles that are protected.
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4 Conclusion and Future Work

Future extensions to the software include implementing higher-degree Bézier
curves (a challenge as much in the output in SVG format as in the mesh
creation) and other interesting curves. Improvements in efficiency will also
be sought, including improving the radius computation and, as in [5], only
protecting small angles when necessary. We anticipate releasing the full code
under the MIT license in early 2011.
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